MicroRNA160 Modulates Plant Development and Heat Shock Protein Gene Expression to Mediate Heat Tolerance in Arabidopsis

نویسندگان

  • Jeng-Shane Lin
  • Chia-Chia Kuo
  • I-Chu Yang
  • Wei-An Tsai
  • Yu-Hsing Shen
  • Chih-Ching Lin
  • Yi-Chen Liang
  • Yu-Chi Li
  • Yun-Wei Kuo
  • Yu-Chi King
  • Hsi-Mei Lai
  • Shih-Tong Jeng
چکیده

Global warming is causing a negative impact on plant growth and adversely impacts on crop yield. MicroRNAs (miRNAs) are critical in regulating the expression of genes involved in plant development as well as defense responses. The effects of miRNAs on heat-stressed Arabidopsis warrants further investigation. Heat stress increased the expression of miR160 and its precursors but considerably reduced that of its targets, ARF10, ARF16, and ARF17. To study the roles of miR160 during heat stress, transgenic Arabidopsis plants overexpressing miR160 precursor a (160OE) and artificial miR160 (MIM160), which mimics an inhibitor of miR160, were created. T-DNA insertion mutants of miR160 targets were also used to examine their tolerances to heat stress. Results presented that overexpressing miR160 improved seed germination and seedling survival under heat stress. The lengths of hypocotyl elongation and rachis were also longer in 160OE than the wild-type (WT) plants under heat stress. Interestingly, MIM160 plants showed worse adaption to heat. In addition, arf10, arf16, and arf17 mutants presented similar phenotypes to 160OE under heat stress to advance abilities of thermotolerance. Moreover, transcriptome and qRT-PCR analyses revealed that HSP17.6A, HSP17.6II, HSP21, and HSP70B expression levels were regulated by heat in 160OE, MIM160, arf10, arf16, and arf17 plants. Hence, miR160 altered the expression of the heat shock proteins and plant development to allow plants to survive heat stress.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

STABILIZED1 Modulates Pre-mRNA Splicing for Thermotolerance.

High-temperature stress often leads to differential RNA splicing, thus accumulating different types and/or amounts of mature mRNAs in eukaryotic cells. However, regulatory mechanisms underlying plant precursor mRNA (pre-mRNA) splicing in the environmental stress conditions remain elusive. Herein, we describe that a U5-snRNP-interacting protein homolog STABILIZED1 (STA1) has pre-mRNA splicing ac...

متن کامل

Identification and Expression Analysis of Two Arabidopsis LRR-Protein Encoding Genes Responsive to Some Abiotic Stresses

AbstractTwo Arabidopsis thaliana genes, psr9.2 and psr9.4 appearedto be highly similar to a phosphate-starved induced gene,psr9, isolated from Brassica nigra suspension cells.Sequence analysis classified the encoded polypeptides asmembers of leucine-rich repeat (LRR) proteins superfamily.The sequence of psr9 proteins comprise a unique N-terminalregion e...

متن کامل

STABILIZED1 Modulates Pre-mRNA Splicing for Thermotolerance1[OPEN]

High-temperature stress often leads to differential RNA splicing, thus accumulating different types and/or amounts of mature mRNAs in eukaryotic cells. However, regulatory mechanisms underlying plant precursor mRNA (pre-mRNA) splicing in the environmental stress conditions remain elusive. Herein, we describe that a U5-snRNP-interacting protein homolog STABILIZED1 (STA1) has pre-mRNA splicing ac...

متن کامل

Heat shock protein 101 plays a crucial role in thermotolerance in Arabidopsis.

Plants are sessile organisms, and their ability to adapt to stress is crucial for survival in natural environments. Many observations suggest a relationship between stress tolerance and heat shock proteins (HSPs) in plants, but the roles of individual HSPs are poorly characterized. We report that transgenic Arabidopsis plants expressing less than usual amounts of HSP101, a result of either anti...

متن کامل

The Opuntia streptacantha OpsHSP18 Gene Confers Salt and Osmotic Stress Tolerance in Arabidopsis thaliana

Abiotic stress limits seed germination, plant growth, flowering and fruit quality, causing economic decrease. Small Heat Shock Proteins (sHSPs) are chaperons with roles in stress tolerance. Herein, we report the functional characterization of a cytosolic class CI sHSP (OpsHSP18) from Opuntia streptacantha during seed germination in Arabidopsis thaliana transgenic lines subjected to different st...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 9  شماره 

صفحات  -

تاریخ انتشار 2018